A Strongly Diagonal Power of Algebraic Order Bounded Disjointness Preserving Operators
نویسندگان
چکیده
An order bounded disjointness preserving operator T on an Archimedean vector lattice is algebraic if and only if the restriction of Tn! to the vector sublattice generated by the range of Tm is strongly diagonal, where n is the degree of the minimal polynomial of T and m is its ‘valuation’.
منابع مشابه
Polar Decomposition of Order Bounded Disjointness Preserving Operators
We constructively prove (i.e., in ZF set theory) a decomposition theorem for certain order bounded disjointness preserving operators between any two Riesz spaces, real or complex, in terms of the absolute value of another order bounded disjointness preserving operator. In this way, we constructively generalize results by Abramovich, Arensen and Kitover (1992), Grobler and Huijsmans (1997), Hart...
متن کاملA classification of hull operators in archimedean lattice-ordered groups with unit
The category, or class of algebras, in the title is denoted by $bf W$. A hull operator (ho) in $bf W$ is a reflection in the category consisting of $bf W$ objects with only essential embeddings as morphisms. The proper class of all of these is $bf hoW$. The bounded monocoreflection in $bf W$ is denoted $B$. We classify the ho's by their interaction with $B$ as follows. A ``word'' is a function ...
متن کاملA characterization of orthogonality preserving operators
In this paper, we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$. We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator. Also, we prove that every compact normal operator is a strongly orthogo...
متن کاملAdditive Maps Preserving Idempotency of Products or Jordan Products of Operators
Let $mathcal{H}$ and $mathcal{K}$ be infinite dimensional Hilbert spaces, while $mathcal{B(H)}$ and $mathcal{B(K)}$ denote the algebras of all linear bounded operators on $mathcal{H}$ and $mathcal{K}$, respectively. We characterize the forms of additive mappings from $mathcal{B(H)}$ into $mathcal{B(K)}$ that preserve the nonzero idempotency of either Jordan products of operators or usual produc...
متن کاملALGEBRAIC GENERATIONS OF SOME FUZZY POWERSET OPERATORS
In this paper, let $L$ be a completeresiduated lattice, and let {bf Set} denote the category of setsand mappings, $LF$-{bf Pos} denote the category of $LF$-posets and$LF$-monotone mappings, and $LF$-{bf CSLat}$(sqcup)$, $LF$-{bfCSLat}$(sqcap)$ denote the category of $LF$-completelattices and $LF$-join-preserving mappings and the category of$LF$-complete lattices and $LF$-meet-preserving mapping...
متن کامل